
AFWAL-TR-8 8-3040

AD-A208 277

A VOLTERRA SERIES SUBMODEL APPROACH TO MuDELLING
NONLINEAR AERODYNAMICS SYSTEMS

W.T. BAUMANN
T.O. HERDMAN
H.L. STALFORD
F.E. GARRETT

Virginia Polytechnic Institute

and State University
Interdisciplinary Center for Applied

Mathematics
Blacksburg, VA 24061

May 1988

Final Report for Period July 86 to July 87

Approved for public release; distribution unlimited

FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRICHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553



NOTICE

When Government drawings, specifications, or other data are used for
anv purpose other than in connection with a definitely Government-related

procurement, the United States Government incurs no responsibility or any
ohl i-atlion whatsoever. The f-ict that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be recardcd by implication, or otherwise in anv manner construed, as
licensing the holder, or any other person or corporation; or as conveying
inv rights or permission to manufacture, use, or sell any patented invention

tiuat may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including

foreign nations.

This technical report has been reviewed and is approved for publica-

tion.

CHARLES F. SUCHOMEL DAVID K. BOWSER, Chief
Project Engineer Control Dynamics Branch
Contro7 Dynamics Branch Flight Control Division
Flight Control Division

FOR THE COMMANDER

H. MAX DAVIS, Assistant for
Research and Technology
Flight Control Division
Flight Dynamics Laboratory

If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFWAL/FIGC, Wright-Patterson AFB, OH 45433-6553 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
aocument.



UN~LSSIFIED
SC119TY CLASSIFICATIO IS PAGE!

IREPORT DOCUMENTATION PAGE UAf01"II.kPk SEURT T CLASSIFI CAIO 1b. RE TRCTIVE MARKINGS

13. SiCURITY CLASSIFICATION AUTHORIlTY 3. IDISTRIBUTI1ON IAVAILABIL1TY OF REPORT

NbICASFCTO;ONRDN SC1DL Approved for public release;
5j-"SIFATIN /OWNRADNG CHEULEdistribution is unlimited.

[2~FORINORGANIZATION REPORT NUMBER(S) S. MONITORIING ORGANiZAT)ON REPORT NUMBER(S)-

PROMNORAlAlN RbOFIESMO ANAL- TR-88--3040

oUAME OF PIFRIGOGNZTO 16.OFCSYBL 7a. NAME OF MONITORING ORGANIZATION

Iik'inizPolyechnc IFlight Dynamics Laboratory (z~rw&PLI
and tt nvriyA rgt eoatclLbrtre

ACDDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, crod ZI P Codt)

Wrigbt-Patterson AB
M 31acksburg, Virginia 24061 Ohio 45433-6553

h:. ME OF FUNDING / SPONSORING 8b, OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT iDENTIHICA -O0H 4UK48ER
SOPRGANIZATION Air Force Wright (I appicable)

~Aeronauticai Laboratories j FIG4CB F33615-86-K-3617
ADDRESS (City, State, anda ZIP Code) 10 SOURCE OF FUNDING NUMBERS

'4cght PtiroAFELEMENT NO No NO ACCESSION NO
O)hio'.5433-6553 2307 j 26

ITLE (ir'ckde Security Cassificatpon)

A Volterra Series Submodel Approach to Modelling Nonlinear Aerodvaait~:V

[12PESNAL -AUTHC-R(S)

- W.T. Baum~ann, T. L. Herdman, H. L. StaJlford F.E. Garrett
13&. T*YPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Mcnih, Day) 15. PAGE COUNT

Final I 1988, Mw;- 7/0I16. SUPPLEMENTARY *.OTATiON

17. COSATI CODES 18. SUBJECT TERMS (Continue. on reverse if necessary and izentifL k- block number)
-GROUP S-GROUP Nonl inear F]iing k4ua1 i (i ~ '0(11ir - I!Eali,

-~~ o~ n In i noar S v,, om'; 111eor' vi

'.'1terra S, -z

9 ABSTRACT (Continue on reverse if necesary and identify by block number)

i'hperformance aircraft have mission requirements for operating in high angle-of-attack and
13--.!:--ip conditions and in various maneuvers of unsteady, large amipitudes governed by
Siultiple-input, multiple-output nonlinear dynamics. The large amplitudes coupled with high
Idegree nonlinear dynamics lead to requirements for nonlinear flying qualities. These
a')3 A ,ties require analyses of nonlinear dytamic stability, nonlinear control, and nonlinear
rf .',oe behavior of such aircraft. Techniques are needed Ithat (1) are computationally fea-
s!lil, (2) retain the nonlinearities of the aircraft and (j) provide physical and mathematica

4Iunders tand -rig of the important nonlinear flying qualities. This report documents the results
* of ,1forts to develop such techniques using the Volterra Series represeutation for nonlinear

~s. ~models of higi. a flight.

20 DiSFRiBUTIGN I'AVAILABILTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICA7HONI !2 '.1CLASSIFIEDC11UNL )MITE D 0l SAME AS APT Dl TI( USERS UNCLASSIFIED
'4NAME OF RESPONSIALE INDIVIDUAL 12b TELEPH4ONE (Include 22aC-,)Zc 0;FOCI SYMBOL

Charles F. Suchomel (513) 255-8496 AFWAL/FIGCB
(,O Formn 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF TH4IS PAGE

I F.AS I lLI



TABLE OF CONTENTS

1. Intro d u c tio n . .................................. ....... .. .. . ...... ......

2. Volterra Series Representation For Nonlinear Systems .......................... .3

3. Sim ulation R esults ..................... .................................. 6

3.1 Longitudinal Lim it Cycle ............................................ 6

3.2 W ing Rock Lim it Cycle ............................................ IS

i. A n a ly sis . .. . . . . . . . . ... .. . . . .. .. .. . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . .. . . . 2 7

4.1 Volterra Series A nalysis ............................................ 27

4.2 C lassical A nalysis ................................................. 30

5. C onclusion .............................................................. 40

R eferen ces .............................................................. 42

L ist of Sym b ols .......................................................... 45

Appendix A. Volterra Series Representation .................... ............. 47

Appendix B. Longitudinal Equations of Motion .............................. 50

Appendix C. Volterra Expansion for Longitudinal Example .................... 54

Appendix D. W ing Rock M odel .... ........................................ 56

Appendix E. Expansion of Volterra Series for Wing Rock Example .............. 62

Appendix F. Two-Term Volterra Series Approximation ........................ 64

Appendix G. SMP Function for Volterra Equation Calculations ................. 71

i*le



FOREWARD

This technical report was prepared by Drs. William Baumann, Terry Herdman, Harold

Stalford, and Mr. Frederick Garrett, Jr. This work was performed under the sponsorship

of the United States Air Force (USAF), and was administered under the direction of the

Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air

Force Base, Ohio. Mr. Charles F. Suchomel (AFWAL/FIGC) was the Project Engineer

for the Air Force. This report represents a part of the task to identify a technique that

describes nonlinear aircraft dynamic properties potentially useful as flying quality indicators

in large-amplitude and/or high-acceleration motions. This work was accomplished over the

period 16 July 1986 through 15 July 1987.

iv



1. Introduction

High performance aircraft have mission requirements for operating in high angle-of-attack

and sideslip conditions and in various maneuvers of unsteady, large amplitudes governed by

multiple input, multiple-output nonlinear dynamics. The large amplitudes coupled with

high degree nonlinear dynamics lead to requirements for nonlinear flying qualities. These

qualities require analyses of nonlinear dynamic stability, nonlinear control. and nonlinear

response behavior of such aircraft. Techniques are needed that (1) are computationally fea-

sible, (2) retain the nonlinearities of the aircraft and (3) provide physical and mathematical

understanding of the important nonlinear flying qualities.

One methodology which has recently exhibited promising evidence of accomplishing the

above is the Volterra Series. The purpose of this project is to obtain Volterra series rep-

resentations of nonlinear systems typical of high performance aircraft in large amplitude

maneuvers.

The development of the Volterra representation for the six DOF (degree of freedom)

rigid body-equations of motion is given in [1]. Therein, the nonlinear equations of motion

are formulated using the four-parameter (quaternions) method (see [2,3,4]). The first three

terms of the Volterra Series representation are constructed in [5] for the longitudinal motion

of the F-8 crusader aircraft using the nonlinear model developed by Gerrard and Jordan

[6]. Suchomel [5] has numerically evaluated the three-term Volterra Series representation

of an extended version of Garrard and Jordan's model which incorporated some additional

aerodynamic drag and thrust terms. Suchomel's work compares the predictive performance

of the three-term 'Volterra Series representation against the Runge-Kutta integration of the

full nonlinear model. His results demonstrate that the approximating three-term Volterra

Series gives an accurate prediction of the output response of the given nonlinear system.

The present work continues the application of the Volterra Series representation [1] to

nonlinear aircraft models of high a flight. The nonlinear models of such flight, have natural

low-order submodels which hold over separate flight regimes (e.g., pre-stall, stall and post-



stall). For example, i.i the pre-stall regime we observe an almost linear relationship between

the state variables and the aerodynamic force and moment coefficients. In the stall and post-

stall regimes the relationship becomes a combination of linear, bilinear, quadratic, cubic, etc.

It is not only necessary but unnatural to search for a single high-order, nonlinear relationship

that governs flight behavior in the total envelope spanning pre-stall, stall and post-stall flight.

It is, however, feasible to provide simple low-order dynamics that govern each separate flight

regime and then combine them to form the total nonlinear model. The total then consists of

a set of simple low-order equations that govern flight in each regime (or subspace) and that

agree with the equations of the adjoining regime at their common boundaries. In this work

we consider such subspace models. They come about naturally as described above.

In Section 3.1 we consider a nonlinear wind tunnel model for high alpha (a) longitudinal

flight involving the limit cycle. We show how the complex nonlinear aerodynamic model has

a natural representation in terms of linear and quadratic subspace models winch have fairly

simple Volterra Series representations. Simulation analysis is conducted on both the original

nonlinear windtunnel model and the Volterra subspace approximation. The accuracy of the

,aplproximation is investigated.

Next, in Section 3.2, we consider a nonlinear windtunnel model of wing rock which

is generated by unsteady aerodynamics effects [23-33]. The complex model is a simple

composition of two bilinear subspace models. Again, simulation analysis is conducted and

the accuracy of the approximation is investigated.

Section 4 considers methods for analyzing the nonlinear responses discussed in Sect ion 3.

In 4.1 an approach based on Volterra models is discussed. The application of classic analysis

techniques to the same models of Section 3 is explored in Section 4.2.

Our conclusions and suggestions for future research are contained in Section 5.
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2. Volterra Series Representation For Nonlinear Systems

The first approach usually taken when confronted with the task of analyzing a nonlinear

system of ordinary differential equations is to linearize. However, some current flight dynam-

ics problems of interest to the Air Force possess significant nonlinearities in the complete

mathematical model that cannot be ignored. To predict the behavioral characteristics of

the system, the complete nonlinear model, or at least an approximation that contains the

significant nonlinearities, must be analyzed.

The well-developed theory of differential equations has provided general existence and

uniqueness results for nonlinear systems. However, these results, unlike the corresponding

results for linear systems, do not provide a closed form representation for the solution.

The mathematical tools for the analysis of nonlinear systems are limited, and the known

tdiniques are not well developed when compared to the results for linear systems.

One technique for the study of nonlinear systems that has shown promise is the Volterra

series approach [1,5,7-19]. This approach provides a series representation for the input-output

behavior of the nonlinear system. In particular, the Volterra series gives a mathematical

representation of the solution in the form of an expanding infinite series of integrals which

encompasses the nonlinearities of the system. This representation can be viewed as a series

in which each term is the solution of a linear equation where the nonlinearities of the system

appear as forcing functions. For a nonlinear differential equation of the form

X = f(x,u)

the Volterra series representation of the solution is an infinite series of integrals

X(t) = ho(t) + j h1(t - a1)u(ai)daj

+ j j h2(t - ol, t - (2.1)

+ j. j. j h 3 (t - Ol, t - o'2 , t - a 3 )u(al)u(a2 )u(o 3 )dol'da2 dOr3
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where ho(t) is the zero-input solution and the hi, i = 1,2,..., are called the ith order Volterra

kernels. For a complete discussion of the Volterra series representation for ordinary differ-

ential equations see [20,21]. Also, see Appendix A for additional comments on the \olterra

series.

The Volterra series approach provides an approximation for the solution by truncating

the series. Such a finite representation gives the response of the system in terms of the input

signals. initial conditions, and the stability derivatives of the system. This approxinmat iou

provides not only a methodology for predicting the behavioral responses of the nonlinear sys-

tem but also a methodology for the study of how various parameters affect the controllability

and stability of the system.

The mathematical theory for the Volterra representation is by no means complete. Al-

though some convergence results for the series representation exist, they are extremely con-

servative and have not proven useful in engineering applications. In most applications the

8igrifikaL ,X.11,cberi tics of the hyttem are conttained in Lne second or third terms; therefore

convergence is not a major issue.

Our technique for approximating the solution of nonlinear models of high a flight is

based on a subspace concept. The subspaces arise Iiatraiy in the aerudyit-ainic forccs and

moments in high performance flight. Our approach is outlined as follows:

1. partition the total envelope into natural subspaces in which the nonlinearities can be

accurately described by low-order multivariable polynomials (preferably third order or

less),

2. pick an equilibrium point for each subspace, (we have no definite procedure for selecting

the equilibrium point - at present these points are selected in an ad hoc manner),

3. approximate the solution of the differential equation for each subspace by a truncated

Volterra series (three terms or less).

For this approach the differential equation form is employed for the terms of the Volterra
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series instead of the integral from (see Appendix A). Consider inputs of the form

u = a0 + ku1

where u0, it, denote an equilibrium and a perturbation input. The solution to the nonlinear

differential equation has the form, see [20, Chapter three],

x = x0 ± kxl - k 2 x 2 + k3 x 3 +

where x is the state, k is a constant, xo is the initial equilibrium state and x, is the contribu-

tion to the state from the ith term in the Volterra series. Substituting this representation for

the solution x into the governing equation, expanding the right hand side in a Taylor series

with respect to k, and equating coefficients of equal powers of k gives rise to the following

'quations for the first three terms of the Volterra series representation

i: = Ax, + bul

X = AX 2 + gi(xi), x 2 (0) = 0

,i3 = Ax3 + g2 (x1,x 2 ), X 3(0) = 0

where A is a n x n matrix (the state is n x 1), b is a n x 1 vectut, cnd the g,,i = 1,2 are

in general n x 1 nonlinear functions of their variables. All of these quantities depend on the

equilibrium point about which the Volterra series is expanded. Upon entering a subspace the

state equations are reinitialized by incorporating the current state into the initial condition

of the linear part xi. In the event that the polynomial of step 1 above is first order, the

corresponding, gi, i = 1,2 are zero and the Volterra series is simply a linear system.

In Appendix G we describe a program that computes the differential equations for each

Volterra term. This program was used for all the Volterra equation calcnlations discussed in

this report.
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3. Simulation Results

The following examples will serve to illustrate the application of the Volterra series

representation to subspace models of nonlinear systems.

3.1 LIongitudinal Limit Cycle: Example 1

For the purpose of illustrating our approach, we consider a simplified nonlinear model of

the longitudinal limit cycle at high angle of attack, ca. Simplified high a flight is governed

roughly by the following two differential equations developed in Appendix B

e = q + 9.168C,(a) - 1.8336(6b + 70 ) + 7.361904 (3.1)

q= .5.73(C,,m + C, b,) + 2.865 (3.2)

where a is the angle-of-attack in degrees, q is the pitch rate in degrees per second and 6,

is the elevator control in degrees. To keep the presentation simple, we prescribe (', = -1

and C',6 = -1.5. The nonlinear plunging force coefficient C,(a) is represented by the

following equations (3.3) through (3.6). It has the appearance of an inverted high a lift

curve, Figure 3-1. This model in discrete data points was taken from measured wind-tunnel

values of the T-2C airplane, Stalford [22]. The coefficients in equations (3.3) through (3.6)

were numerically calculated to provide a fit for the discrete data points for the corresponding

a intervals.

The slope of the C, curve is approximately linear up to stall which occurs around a

14.5'. This portion of the C, curve is represented accurately by the linear function

C,(a) = -6.07378494a, a < 14.36'. (3.3)

In "he stall region between 14.36' and 15.6' the C, curve is quadratic in nature and is

represented accurately by the quadratic equation

(',(a) = 0.09722a 2 - 2.8653a + 20.03846, 14.36' < a < 15.6'. (3.A)

In the stall/post-stall region between 15.6" and 19.60 the C. clirye reverses its cuiirvaliiire arid

is represented accurately by tle quadratic equation

('A() = -0,01971a 2 + 0.74391av - 7.80753, 15.6' < a < 19.6' (3.5)

6
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(DEGREE)

REGION I: < 14.36', C~'(') a- LINEAR FUNCTION

REGION 11: 1-4.360 < a < 15.60, C() QUADRATIC FUNCTION

REGION 111: 1.60 < a < 19.60. (?Z(a) - QUADRATIC FUNCTION

REGION IV: 19.6" < a < 280, (Cz(a) , LINEAR FUNCTION

FIGURE 3-1. NONLINEAR PLUNGING FORCE COEFFICIENT C-.(a)

FOR T-2C AIRPLANE 6, = 1.
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In the post-stall region between 19.60 and 28', the C, curve exhibits linear behavior

C,(o) = -0.01667o - 0.47333, 19.6' < a < 28'. (3.6)

The above division of the a interval into four a subspaces leads to an accurate representation

of the nonlinear function C,(a) by four low-order equations.

In each of the subspace regions described by Equations (3.3) through (3.6) an equilibrium

point is chosen and the solution of the differential equation is approximated by the first three

terms of its Volterra series. For simulation and analysis purposes, we use the differential

equation form for the Volterra series terms. Following the procedure outlined in Section 2,

with state x = [c,q]T and input u = , (elevator angle), we consider inputs of the form

6, = 6eo + k6,1 (3.7)

where &0 is the equilibrium input and k is a real parameter needed for the perturbation anal-

ysis below and does not have physical significance. The solution to the nonlinear differential

equations (3.1) and (3.2) has the form

x = xo + kxl + k2x2 + k 3X + (3.8)

where x0 = [ 0, qo T is the equilibrium state and xi [ai, qi]T is the contribution to the state

from the ith term in the Volterra series. Substituting (3.7) and (3.8) into (3.1) and (3.2),

expanding in a Taylor series with respect to k, and equating coefficients of equal powers of

k results in differential equations for the first three Volterra series terms of the form

ii = Ax 1 + b,,

x 2 = Ax2 + g(xi), X2(0) = 0 (3.9)

X3 = Ax 3 + g2 (xI, X 2), X3(0) = 0.

In all four subspaces regions the column matrix b is given by (see Appendix C for Region II)

b= [1 8336] (3.10)
-8.595



and the matrix A, the Jacobian at (ao, qo, 6e0 ), has the form

A All 1] (3.11)
L -5.73 01

The entry All depends in this example on the value ao. However, in subspace regions I

and IV, as described by equations (3.3) and (3.6), the approximation (3.9) is linear with

g1 (xI) = g2(x 1 ,x 2) = 0 and All is independent of a0 with values -0.67646 and -0.152831,

respectively.

In the subspace regions II and III, as described by Equations (3.4) and (3.5), the functions

g, and g2 have the form

g1 (Xi) = [Yal1 (3.12)

g2 (Xl, X2) [92i1a2] (3.13)

where the constants gi and g21 depend on the particular region. We picked the equilib-

rium point for each region by first assigning a value for 6e0 and then calculating ao, qo from

equations (3.1) and (3.2). In region II, the Volterra series has been expanded about th equi-

librium point (a0, qo, 6,) = (14.360, -1.7552o/sec, -9.24') giving gl1 = 0.8913, g21 = 1 "826

and Al1 = -0.6709. In region III, the Volterra series has been expanded about the e iui-

librium point (ao, qo,,) = (17.60, -7.911239o/sec, -11.40) giving gil = -0.180701,921 =

-0.361403 and All = 0.459482. The calculations for 911,21 and All for region II are givel

in Appendix C. In the prediction analysis we use the following procedure. Starting from

conditions a' = 11',qo = 0 and 6, equal to a constant value, the Volterra model of the

first subspace describes the airplane's response until a = 14.36' is reached. At this point

the Volterra model of the second subspace describes the response until a reaches one of the

boundaries, 14.36' or 15.6'. If the response intersects the 14.36' boundary, then the first

Volterra model governs the response. If the response intersects the 15.5' boundary, then

the third subspace model governs the motion while a remains between 15.6' and 19.6'. The

fourth subspace model governs the model when a is between 19.60 and 280. Upon entering

a new region, the equilibrium state, xO, is changed to correspond to the equilibrium point

9



used in this region. The initial linear state x, is set equal to x - xo, the value of the state

at the boundary crossing minus the new equilibrium value. The initial "nonlinear" states,

X2, X3, ..., are set equal to zero.

We define r, as the state resulting from a Volterra approximation with j terms

r 1id =XO±+ZXi &ja (3.14)

where xo is the equilibrium state.

In the example described above we have j 3

•,3 (t) = X + X +(t) + X2(0)+ x 3(t) (3.15)

where x,(t), i = 1, 2, 3 satisfies (3.9). The solution to the nonlinear differential equations (3.1)

and (3.2) is denoted by x(t) = [a(t),q(t)]T. We use a fourth-order Runge-Kutta routine to

calculate x(t), thus a(t).

We consider two step inputs b, = -9.2' and b, = -9.4' . The onset of the limit cycle

occurs between these two inputs. For b, = -9.2', the responses a(t) and &3(t) are compared

in Figure 3-3. Their differences are presented by the solid line in Figure 3-6. We observe

no limit cycle for this input. The three-term Volterra response is an excellent match to the

nonlinear response. The maximum difference is only 0.05 degrees as shown in Figure 3-6.

For 6, = -9.40 , the responses a(t) and &3 (t) are compared in Figure 3-4 with their

differences presented by the solid line in Figure 3-7. This input of b, = -9.4' generates

a limit cycle. Again the three-term Volterra model response is an excellent match with a

maximurn difference of 0.01 degrees over a time interval of 100 seconds as shown in Figure

3-7.

For comparison, we consider a piecewise-linear model, choosing the following regions and

linearized models of C((a), Figure 3-2,

C,(a) = (-0.07281587)a, a < 14.74' (3.16a)

('() = -1.073305924 + 0.088470922(a - 14.740), 14.740 < a < 17.40 (3.16b)

10



CQ(a) = -0.8308956 + 0.03309905(a - 17.4'), 17.40 < a < 18.870 (3.16c)

C,(a) = -0,7882234 - 0.016633734(a - 18.87°), 18.87' < a < 280 (3.16d)

The responses using the above approximations are compared with the nonlinear responses,

a(t), in Figure 3-5. The differences are presented by the broken line in Figure 3-6 for

6, = -9.2', and in Figure 3-7, for 5, = -9.4' . The maximum difference in Figure 3-6 is

about 2.5 degrees, and in Figure 3-7, about 0.7 degrees. These differences are one to two

orders of magnitude more than those obtained using the Volterra approximation.
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:3.2 Ving Rock Limit Cycle: Example 2

Unsteady aerodynamic effects at high a generate a wing rock limit cycle phenomenon on

aircraft configurations incorporating slender forebodies (e.g., F-5 and X-29), Nguyen, et al

[2-1, 26] and Brandon, et al [30]. We consider a mathematical model of an experimental wind-

tunnel wing rock model developed by NASA Langley Research Center, Nguyen, Whipple and

Brandon [24]. The following equations (3.17) and (3.18) h,+! for a wind-tunnel sting mounted

model on an apparatus which allows the model to i-otate freely about its roll axis with no

angular limitation.

P. =(3.17)

p -b (a)i +( P(o, 3)] (3.18)

where p and p are the roll angle in radians and roll rate in radians per second, respectively.

Here, the constants q, S, b, I, and V are the dynamic pressure, wing reference area, wing

span, roll moment of inertia and free stream air speed, respectively. The coefficient Q, is

the rolling moment stability derivative due to sideslip /3. The coefficient C,, is the rolling

moment derivative due to roll rate p and sideslip rate /3. Approximate wind-tunnel values of

these coefficients are given by Nguyen, Whipple and Brandon for the angle of attack a = 30'.

See the development in Appendix D.

Ct,(O = 30') = -0.4584 (3.19)

C1,(a = 30, /3) = 0.4[1 - 7.64101], (3.20)

0 < 131 < 0.35

= 20 (3.21)

Evaluating the constants in (3.18) we have, see [23],

k-(V) C',(o = 30') = -26.6667 (3.22)

-2-b ( b '1 (a = :300, ) - 0.764S511 - :3.s21,,ll (3.23)
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In view of (3.22) and (3.23), Equation (3.18) becomes

p = -261 .6 6 67p + 0.76485[1 - 3.S21yillp (3.21

Our nonlinear miodel is described by (3.17) and (3.24).

The nonlinear equation (3.24) lends itself to separation into two regions: Regionl I it111

>0 anld Region II With < 0.

p - 2 6 .6 66 7 Vp + 0.76485[1 + (-1) 3 . 2 ,,ojl (3.25)

where j denotes the region.

Let x [ , p]' be the state of the onTliear equations (3.17) and( (3.24). Let x,

be the contribution to the state from the ith termi in the V'olterra series. The differential

equationis for the five-termi Volterra series approximation have thle form

x,=Ax, (3.26a)

£2 =AX2 + g1 (XI), X2 (0) =0 (3.261))

X3 = AX 3 -t- 92 (X1, X 2), X 2(0) = 0 (3.26c)

=4 AX4 +g93 (Xl X2, X3), X4(0)0(32d

+5=Ax 5 + 4 (XI, X2, X3 , X4 ), X5(0) =0. (3.26e)

The equilibrium point of (3.17) and (3.24) is Vo = 0, po = 0. The A4 matrix in (3.26) is giVenl

by

A0 1i3.7
1-26.66671 0.76485 (.7

The g, functions in (3.26) have the form

=i [(x 1, xi) 0 ix~ (3.28a)

where j* denotes the region (.1 = I or j = 2) and where

gI2(.rl) = P17,i (3.28b)
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922(Xl, '2) ly;1P2 + YWIP (3.28c)

932(Xl , X2, X3) = PIp3 + '2P2 + 037i (3.28d)

942(X I, X2, X3, X4) = pP + S02P3 + P13P2 + 'i4P1 (3.28e)

As in eq. (3.14). we let i%, be the state resulting fromn a Volterra series with J terms. For

j .=1,2,.. the roll angle responses for the initial condition p(0) =5.73' and p(O) =0.0 are

presented in Fig-z.res :1-S through 3-12 respectively. 1 hie roll-angle response of the linearized

syVstem rl- =i Ax, is compared wvith the nonlineai response ill Figure 3-8. The linearized
- iverges to a rolageo SO fe eonds: it does not predict the stable I'm'i

sNst ern d ola eo 8'atr9s(i

(,\Cie. 11e limit -vdc. Is p)redicted by thle t wo-terni V(olterra approxlimation; the amplitude is

short by about 7 (legrees. The three-termn Volterra approximlation overpredicts the amplitude

by about 5 degrees. The four-term and five-term Volterra approximations provide goodl

predict ions for both the amplitude and the period of the wing rock limit cycle, Table 3.1.

The five-term Volterra approximation predicts the amplitude to within 0.31 degrees. The

nonlinear system response was calculated using a fourt h-order H unge- Kutta routine.

3.1. Comiparison of Predicted Winig Rock Linit Cycle Chiaracteristics

System ~, Roll Angle

Volterra Period Amplituide
A pprox imiatio0n (Seconds) (Degrees)

t wo-Termis 1.2100 28.15
thlree-Termns 1.2257 40.60
four-Trerms 1.21500 341.46
five-Terms 1.21857 3.5.65

Nonlinear 1.2187 35.3-1
Syvstem

Weobserve that 1)0th the periodI and amuplit ude values for the Volterra approximations

given in Table 3.1 approach the corresponding value for the nonlinear system. Let Et,l

2. 3. 1. 5denotethle err-or for thle amplituide ;is predhicted by the i-term Volterra approximation.
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It follows that

E iI < . i= 2,3, 4.1~ E.l -

Thus we might suspect quadratic convergence for the sequence {lE}il. We make this

observation for this one example only and note that it is based on numerical results for four

terins.
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FIGURE 3-11. FOUR-TERM VOLTERRA APPROXIMATION (BROKEN

LINE) PREDICTS STABLE WING ROCK OF NONLINEAR SYSTEM (SoLID

LINE) FOR vo = 5.73 ,p0 0 WITH 0.90 AMPLITUDE ERROR.
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FIGURE 3-12. FIVE-TERM VOLTERRA APPROXIMATION (BROKEN

LINE) PREDICTS STABLE WING ROCK OF NONLINEAR SYSTEM (SOLID

LINE) FOR po = 5.73, p0 = 0 WITH 0.310 AMPLITUDE ERROR.
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4. Analysis

In this section we consider several approaches to analyzing the nonlinear limit cycles

considered in Section 3. First we suggest an approach for analyzing the wing rock limit

cycle that is based on the Volterra submodels developed previously. Following this, the

usefulness of classical approaches to the analysis of the wing rock and longitudinal limit

cycles is explored.

4.1 Volterra Series Analysis

In this section we apply the Volterra series subspace technique to the wing rock example

given in Section 3.2. In particular, we obtain a two-term representation for the solution of

the system

p (4.1)

= -26.67p + 0.76485[1 - 3.8 2 1 pIjp

For convenience we let a = 26.67, b = 0.76485, c = 3.82b and define the 2 x 2 matrix A by

The system (4.1) can now be represented by the matrix equation

;i = Ax + g(x) (4.2)

where x = [% p]T and the nonlinear vector valued function g is defined by g(x) = [0, -cjpPp]T.

It is to be noted that the unique equilibrium point for (4.2) is x0 = 0. We assume that

system (4.2) has a solution of the form x = kxl + k2x2 + ... where k is a constant and

Xi = [x 1, x, 2]T = [p i = 1,2,.... Substituting x into (4.2) yields

k*I + k 2 ... = A(kxr + k2x 2 + ... ) + -c(kxii + k2 x 21 + ...)(kx 2 + k2x 22 +

in the region 'p > 0. At this point we equate the coefficients of the first and second powers

of the constant k to obtain the following equations for the first and second terms of the
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Volterra series representation

= Ax, (4.3)

and

i2 Ax 2 + g 1 (xI) (4.4)

where gi(xi) = [0, -cx 1 xX1 2]T. To include initial conditions, say x(O) = xO, in system (4.2)

we modify (4.3) through (4.4) to become

. = Axl, xl(O)= x°  (4.5)

and

i2 = Ax 2 + g 1 (xI), X2(0) = 0 (4.6)

The state transition matrix for (4.5) is given by (see Appendix F)

At = ebt/2 [B, (t) B, 2(t)1

SB21 (t) B 22(t)j

where
b .1.

B1 I(t) = coswot - -sznwot, B 12(t) = -sinwot
2w,,W

B 21 (t) = -asnwot, B 22(t) = coswot + --- sinwot (4.7)
-WO ,2w 0

and wo = V/(4a - b2)/4. For xO = [O,pO]T we have

xi(t) = eA4 [ ° ]pO , B2.2 t (4.8)

and /' [ 12- (9
At = 0 B22( ) B B1 2 (r)B 22(r)dt. (4.9)

UTsing various integration techniques, we find that X2() has the form (see Appendix F)
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t)(3b2 + 36 ) sin3wo t
X2 (t) -6ab J 3w (b2 +36W2)

+ 4b sin 2 wotcosOot b1/

+ 12a W2(b 2 +36W2)-bl

+ [ 8b coswo- -t/[-b 2 - 36w + 24aj (b + 64)a

+ f -8b 2  1 sinwot W2
L+36IW2 _ 24ab J 2awo(b2 + 36woI+ -8

-Sb ] 1
b2 + 36W2 -24a] a(b + 36wo)

Combining (4.7), (4.8) and (4.10), we have a representation for the approximate solution

2 (t) = x1 (t) + z 2(t) for (4.1) with initial condition o(0) = 0, (0) = p0 . To calculate the

amplitude and period for the limit cycle of the wing rock example, we can set

i 2(tl) = xI(tl) + X2 (tl) = 0 (4.11)

where tj represents half the limit cycle period. Assuming that the limit cycle is symmetric

with respect to the p axis, equation (4.11) allows us to (at least in theory) solve for p0 and

tI in terms of a,b,c.

The exact representation for p0 and tj in terms of the values a, b and c probably can-

not be obtained in closed form, and ways to simplify the equations to obtain approximate

soi tions should be considered. From this example we see that simple (two-term) Volterra

approximations lead to complicated expessions when solved explicitly. This indicates that

techniques of a more qualitative ,nd indirect nature may be needed to show how the explicit

Volterra solutions can be simplified.
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4.2 Classical Analysis

In this section we present several classical approaches to the analysis of the examples

discussed in this report. A review of several standard techniques will serve to put the new

approach we have considered into proper perspective and to suggest methods for carrying

out analysis using Volterra submodels. In the following sections, the wing rock and longitu-

dinal limit cycles are analyzed using an energy (Lvapunov) method, harmonic balance, and

piecewise-linear analysis.

4.2.1 Wing Rock

The equation that described the wing rock considered in this report is of the form

+ a, - b + c 1:1= 0 (4.12)

where ) is the roll angle in radians and in our case a 26.7, b = 0.765, and c = 2.92.

Most classical approaches to analysis of nonlinear dynamic behavior assume that the

behavior is characterized by a single nonlinear differential equation (i.e. one region). Since

this is the case with our simplified description of wing rock, it is an ideal candidate for

application of classical methods.

Energy Analysis

A standard equation from mechanics, which involves nonlinear damping, is of the form,

see [34],

i + h(x,) + g(x) = 0.

The energy of this system is given by

E .P/2 + fg(x)dx

and the change in energy with respect to time by

dE/dt = -Th(x,i).

Our equation (4-12) can be put in this form using the following correspondence
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g= a p

h = -b + clVI.

To evaluate the change in energy of our system, we consider two cases.

. "0 > 0: -h(x,;i) = [b- c ]

=: dE/dt > (<)0 when V < (>)b/c

II. O < 0: -Th(x, i) = ( 2[b + cp]

= dE/dt > (<)0 when p > (<)- b/c

The regions of energy increase/decrease are shown in Figure 4-1. 1 he situatlion showni in

!"igure 4-1 is similar to that of the classical Van der Pol oscillator. The origin is an unstable

equilibrium point as the system energy increases in a neighborhood of the origin.

i I
I I
I I

I I

I I

I I

I I

I I

I I 9

I I
I I

I I

- b/c

FIGURE 4-1. Regions of Energy Increase/ Decrease
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As the system energy increases, the system is forced into the region 1S01 > b/c where the

energy is decreasing and in turn is forced back into the region 1]S1 < b/c where the energy is

increasing. This alternation between increasing and decreasing energy results in the observed

limit cycle. If the coefficient of the nonlinear term, c, should change sign, then energy will

increase everywhere in the phase plane and the system will be unstable.

This analysis also indicates whv the linear submodel approach fails to predict a stable

limit cycle. The linear submodels accurately re1ect the behavior in a neighborhood of

the origin, where the energy is always increasing, and thus predict completely unstable

behavior. The Volterra submodels reflect the behavior over a !arger region of the state

space and somehow capture the positive damping that occurs for larger values of jOj. An

area for future investigation would be to characterize the damping in a truncated Volterra

approximation.

Although energy analysis is a very powerful tool for this second order example, its use-

fulness declines as the systems become more complicated. It is not generally possible to

define a useful energy (Lyapunov) function for a complicated system of equations.

Harmonic Balance

To apply the first-order harmonic balance method, we assume that the oscillation is a

pure sinusoid

p = Acos(wvt) (4-13)

of unknown amplitude and frequency. Substituting (4-13) into the original differential equa-

tion yields

-Aw2cos(wt) + aAcos(ict) + bAwsin(wt) - cAwl.cos(w')I.iIwt) 0 (4-11)

Substituting the Fourier series for Icos(wt)

2 -1
Icos(,t)l= - + +-.os2l +.7, 3r

into (.-1.1) and dropping all harionics yields

-.. Io.,%ow) + a Aro.s(wt) + bAw;i-(-t) - 2c (. _ .sin( - t ) 07r 67,
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Equating the coefficients of the cos(wt) terns gives the equation for th~e limit cycle frequency

Equating the coefficients of the sin(wt) terms gives the equation for the limit cycle amplitude

3irb

4c

Substituting the values of the parameters a, b, c for our case gives

5.17 (T = 1.216)

A = 35.370

which compare very favorably with the simulation results T = 1.219 and A = 35.34' .

The harmonic balance method is a very powerful tool for analyzing simple oscillations

and can be extended to higher order systems with a concomitant increase in complexity. In

the next section we apply this technique to a more complicated example.

4.2.2 Longitudinal Limit Cycle

An important feature of the equations modeling the longitudinal limit cycle is that the

nonlinearities cannot be represented in a simple manner over the entire range of interest.

Most classical analysis techniques do not apply in this situation. The approach outlined

in this report decomposes the state space into regions in which the nonlinearity can be

represented by a low order polynomial. This section examines two other approaches.

The first approach approximates the nonlinearity by a piecewise-linear function and

provides qualitative information about the behav;or of the resulting system. The second

approach represents the nonlinearity numerically, using a spline fit to wind tunnel data, and

investigates the usefulness of harmonic balance techniques.

Piecewise Linear Analysis

We consider the longitudinal equations (3-1), (3-2) and the piecewise-linear approxima-

tion of C,(a) given by (3-16). The system is unstable in regions II and IIl (1.4.740 < a <
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18.87"), as the coetficient of a in C,(n) is positive, and stable in regions I and IV. For a

given constant input, 6,,0, the equilibrium value of a is found by setting//= 0 and given by

a0 = 0.5 - 1.56 0 .

For values of 6,0 between 00 and 9.50, the equilibrium value of a is in region I. Since this

region is stable we would expect a stable response. For values of 6, between -9.5' and

- 12.2", the equilibrium value of a is in an unstable region. The trajectory cannot converge

to this equilibrium point and it is forced into one of the stable regions that in turn forces it

back towards the equilibrium point. Thus we would expect a limit cycle to develop.

This simple analysis allows us to conclude that a limit cycle will develop for certain

values of 60, and to estimate the onset of the limit cycle as b, -z -9.5'. A more extensive

development of this analysis can be found in [35]. In addition, it should be noted that a large

amount of qualitative and quantitative work has been done in the general area of piecewise-

linear analysis. One advantage of using Volterra submodels will be to reduce the number of

regions, which may make analysis more tractable.

flarmonic Balance

To investigate the usefulness of harmonic balance techniques in more complex sit uations.

we consider the following, more accurate, longitudinal model for the aircraft

a = q + 0.1066 + 0.1097[C,(a, 6,) + Czq(a)q(0.0123)]

q = 5.84[Cm(n,6,) + Cmq(a)q(0.0123)]

where a is in radians and q in radians/second. Because of its small magnitude, the ('-q(a)

term will I)e ignored. The (', 0 m, C,,q functions will be represented by spline fits to wind

tunnel data. Plots of these functions are shown in Figures 3-1 (for 6, = -18'), 4-2, and 4-3.
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The most severe nonlinearities occur near a = 15', which is the onset of stall.

Given a constant be, we first assume the solution has the form

a(t) + acos(wt)

q(t) = q + aqcos(wt) + bqSif(wt).

Using a truncated Fourier series, we can approximate the outputs of the nonlinearities by

C,(a(t), e) = -m + acos(wt)

C.-(ax(t), 6.) = -y _ + a~cos(wt)

Cmq(a(t)) = "Ymq + amqcos(wt)

where the -Y. and a, coefficients are computed numerically. Substituting these expressions

into the model and retaining only first harmonic terms results in three equations for the

unknowns -t, a, and w. The harmonic balance (numerical) solutions for a and w are compared

with values extracted from time-domain simulation results for three values of be below

Harmonic First-Order Balance Simulation

6e a W a w7

-15 2.23 4.71 3.15 4.16

-20 3.54 3.56 4.60 3.19

-25 4.35 2.87 5.85 2.73

The values predicted by a first-harmonic analysis are not very accurate.

One problem with the above procedure is that higher harmonic terms in the Fourier

expansions of Cmq(a(t)) and q(t), which were ignored, can "beat down" and affect the con-

stant and first-harmonic ternis through the Cmq(a)q term in the q equation. By considering

the multiplicative interaction of the second harmonic of Cnq(o(t)) with the first harmonic
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of q (only one of many higher-order contributions) the improved results given below were

obtained.

Modified Harmonic First-Order Balance Simulation

6e a w a w

-15 2.64 4.46 3.15 4.16

-20 4.74 3.21 4.60 3.19

-25 5.87 2.76 5.85 2.73

These results show that with very little additional numerical complexity, it is possible to

obtain accurate results outside the stall region. Near stall (6 , ; -150), however, the results

degrade.

A more accurate (and complicated) analysis assumes the solution is of the form

ct(t) =y + alcos(wt) + a2cos(2wt) + b2Sin(2wt)

+ a3cos(3wt) + b3sin(3wt).

Assuming similar Fourier expansions for q(t), C,(a(t), 6,), Cz(a(t),6,) and Cm(a(t)), sub-

stituting these expressions into the model, and retaining terms through the third harmonic

results in seven equations for the unknowns w, t, a1 , a2, b2, a3, b3. Solving these equations

produced the following results

Harmonic Third-Order Balance Simulation

a w a w

-15 2.96 4.24 3.15 4.16

-20 4.36 3.25 4.60 3.19

25 5.60 2.75 5.85 2.73

These results show good agreement with simulations even near the onset of stall. From

this example, accurate predictions of the amplitude and frequency of the longitudinal limit
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cycle near stall, where the nonlinearities are the greatest, require that the effect of higher

harmonics be considered. When the nonlinear functions involved in the equations are derived

from wind tunnel data, only numerical results will be possible in general.

In summary, the classical methods provide significant insight into the examples consid-

ered in this report. For the most part, however, they are limited to assessing stability and

predicting limit cycles, and therefore do not form a broad base for the study of nonlinear

flying qualities. On the other hand, the Volterra submodels retain the essential character-

istics of the nonlinear model, but at this time we do not know how to analytically extract

the desired information. The analytical work should be eased somewhat by the fact that the

Volterra approach requires fewer regions than the piecewise-linear approach.
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5. Conclusion

This work has investigated the use of the Volterra series representation with regard to

determining nonlinear flying quality parameters, (also see [5, 36, 37]). Our first goal was to

determine if the Volterra series could accurately represent common nonlinear aerodynamic

models over the required range of force/moment conditions. We found that by breaking

up the state space into natural subspaces in which the nonlinearities could be expressed as

low-order polynomials, the total nonlinear model could be represented in each subspace by

a low-order, truncated Volterra series. This is a key result, since dealing with the original

infinite Volterra series would be intractable. Our simulations showed that the combination

of these submodels retained the essential characteristics of the underlying nonlinear model.

Since most nonlinearities encountered in practice can be accurately represented locally by

polynomials, this technique has general applicability.

Our second goal was to determine if a piecewise-linear model, formed by replacing the

nonlinear model by a linear model in each subspace, could accurately capture the nonlinear

phenomena contained in the original model. We found that this was not the case. In

simulations of a wing rock limit cycle, a piecewise-linear model did not predict the stable limit

cycle. Using two-term Volterra models in the same subspaces did predict, via simulations.

the existence of a stable limit cycle. In simulations of a longitudinal limit cycle, the piecewise-

linear model was significantly less accurate than the low-order Volterra model.

The above results demonstrate that there is a need to go beyond piecewise-linear analysis

of nonlinear systems. One appealing feature of the Volterra series is that the "solut ion" can

be written down explicitly, as shown in Section 4.1 for the wing rock example. However,

the solution contains so manv terms, even for this simple example, that further analysis is

necessary in order to extract the important features.

We believe the first priority of future research should be the development of methods for

the qualitative and quantitative analysis of multi-region phenomena using Volterra submod-

el,. If such methods can be found the Volterra approach could be a useful tool for nonlinear
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flying qualities research.

Our work has also indicated several other areas that would benefit from further research.

The first area is the selection of regions and the trim points within regions, and the impact

of this selection on the accuracy of the resulting submodels. In the examples considered in

this report, the selection was done in an ad hoc manner. The second area is the connection

of submodels at the region boundaries. There are several ways in which this can be done

and the method used in our examples, initializing the first (linear) Volterra term with the

current state and initializing the other terms to zero, may not be optimum.
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LIST OF SYMBOLS

variables units l)escription

ce (deg) Angle-ot-attack

,3 (rad) Angle-of-sideslip

6, (deg) Elevator control angle

65. (deg) Equilibrium elevator control angle

6,1 (dcg) Deviation of elevator angle from equilibrium

(rad) Euler roll angle

A Dynamics of linearized equations (i.e. Jacobian)

b Input matrix for control variable u or 5,

b (ft) Wing span (Section 3.2)

CIO (1/rad) Rolling moment stability derivative due to sideslip fi

-IP Rolling moment derivatives due to roll rate p and sideslip rate i

(OmQ (1/deg) Pitching moment derivative w.r.t. a

Cm4 (1/deg) Pitching moment derivative w.r.t. 6

Cz - Plunging force coefficient (approximates inverted lift coefficient)

gi- 1  - Nonlinear term of ith differential Volterra term

hi ith order Volterra kernel

k - Grouping term parameter in Volterra series expansion

p (rad/sec) Roll rate

q (deg/sec) Pitch rate

q (lbs/ft2 ) Dynamic pressure

S (ft 2) Wing reference area

u Control input
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LIST OF SYMBOLS (Continued)

V (ft/sec) Free stream speed

X State vector

X°  Initial condition

Xi State vector of ith term in Volterra series expansion

', - State vector of Volterra series approximation with i terms
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Appendix A

Volterra Series Representation

In this appendix, we show how the Volterra series arises naturally in the solution of

nonlinear ordinary differential equations. The differential form of the series that we have

used in this report will be an intermediate step in the calculation of the integral form that

has been used by Suchomel [17].

To keep the presentation simple, we consider the scalar, first-order, nonlinear differential

equation

x = x + bx 2 + 1. (A.1)

The procedure we outline below is general, and can be extended to equations of any order,

see Rugh [201.

We consider the solution of (A.1) about the equilibrium point (xo,uo) = (0,0). By

considering an input of the form

u = ku, (A.2)

where k is an arbitrary constant, the solution can be written in the form

x = kxl + k2x 2 + k2 x 3 + "" (A.3)

Substituting (A.2) and (A.3) into (A.1), and equating the coefficients of the various powers

of k (this calculation has been done in detail for the specific examples considered in the

report) yields the set of equations

x 1 =x, +u1  xi(O) 0  (A.4)

X2 =T 2 + hX1  x 2(0) =0 (A.5)

47



The solution of (A.4) is well known and given by

The first-order Volterra kernel is

hl(t - o)= .

By considering bx 2 to be the input to (A.5), the solution may be written as

X2 (0) j ''X (~

Substituting for xri(s) from (A.6) gives

X2(t = e~t-Sb jes-CIuj(oi)dyij esa 2 U 1(0'2) d(72 ds.

To facilitate interchanging the integrals, the upper limits of the nested integrals will be

changed from s to t by inserting an appropriate unit-step function

The result is

Xr2 (0) = Ct-8)b ]C 1 6-1(,q - (71) 6 8-1 u1 (a1)do1 ,6jq - 0c2 )CS_"T1 (a 2 )da 2 d'S.

Changing the order of integration yields

X2(t) = jtf bet "1 0  jt e8 .( a 6.( 2 )dsi 2 (oj )U1(0' 2 )dadO'2

The 6-1 functions can be eliminated by writing

X20= jf f be"~ -2 cdsi (or, )111 (Or2 J1 da2.
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Evaluating the innermost integral results in

X2(0) = j0 f1 bet-"' 2[eCt - ea( 4)I1(1)I I7)od'

Thus, the second-oi ler Volterra kernel is

h 2(I~1, ,0 2) = e- -12[t-ea~r~

To put this in the time-invariant form h2 (t - 0 1 ,t 0' a) we can write

h 2 (t, O'l, 0'2) = be(t-O0 ta)C e - emax(O1l'a)]

= h.2(t - o~i, t - o,2).

Therefore, the solution can be written in the form

r(t) I hi(t - orj)u(o1 )doi ±+/~ h2(t - O',t- 0a2)u1 (O1 )u1(0 2)doidOa2

which is identical to the form given by (2.1), where the ho(t) term is equal to zero due to

our selection of (0,0) as the equilibrium point.
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Append. 11

Long-itudinial Equationis of Motioni

[hie following longitudinal equations of motion in wind axes for aircraft flight, arc derived

ini Etkin [2].

I I [' T 1)] 11 gi(0 - a

+ T ~4~ L] -4 cos(O0 - o)

q~k C,, + !L(IX - 1',Z) + -I-(lJJ;. - I,,P..)

Where:

1. [ he states 0, V-, o and q denote pitch angle, air speed, anigle-of-attack and pitch rate,

resIpectivelY.

2. The quantities mn anid IY represen- the aircraft mass and moment of inertia about the

pitch axis y through the center of gravity. The gravity constant is denoted by g.

3. The thrust vector in wind axes is denoted by (Tv, T) where Tv is the thrust along the

velocity vector. The transformation of thrust from the body axes representation (T., Tj)

to t he windI~ axes Y ields5 thle equationls

Iv -= 3I.COSO' +T.sn

T =- T,,q7'*nn + T.cosmv

.1 The aerodl \iarn ic forces in winmd a xes are dlenote(] by drag P) and lift, L. These are relatedl

to thli coefficients ('I) andl C', of dIrag and lift,. respecti vely. as follows

I) I)u;- SY 1



L =- Lift = 4SCL

where 4 is dynamic pressure and S is the reference area of the wings.

5. Transforming the drag and lift forces from wind axes to body axes yields the relationships

X = -Dcosa + Lsina

Z = -Dsina - Lcosa

where X denotes the aerodynamic force along the body x-axis and Z denotes tile aero-

dynamics force along the body z-axis.

6. The aerodynamics pitching moment coefficient is denoted by Cm.

7. The mean aerodynamic chord is represented by c.

8. The aerodynamic forces X and Z and the thrust forces T, and T, do not necessarily pass

through the center of gravity. In general, they have the moment arms l,, l, l, and l,,

respectively, about the center of gravity.

In the above equation, we are assuming that the sideslip angle 0 is zero. That is, we are

considering pure longitudinal motion in the vertical plane - lateral motion is considered to

be zero.

In our work we are interested in the cause of the longitudinal limit cycle. We know that

it is generated by the nonlinear nature of the lift curve. For this reason we simplify tile

nonlinear equations. First, we consider only the & and the 4 equations. Second, we assume

that the moment arms are zero. Third, we use a linear model for the pitching moment as a

function of only angle-of-attack a and elevator control 6e. Fourth, we use a linear model for

the elevator control 6, effect on lift. According to the assumptions we can write

CC,=CCL (a) + CLA
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Cm = C, o + Cm a + C, 6
6 e

Since CL(a)= -- o) - CD(a)tan(a)

we Lave the approximation

CL(a) -C,(a) + c7 , 100 < a < 20'

where c7 is some constant. We make the definitiois

TS

C2 = -- CL

C V =T +gcos( - a) -

3 -m V mV c

C4 = iY Mra

C5 = -- C6
Iv 6

C6= -- c, o .

The resulting equations simplify to the following:

C6 = q + cC (a ) J C26, "+
I 

C3

qt= c4CV + C56, + C6

where (,,.I = 1, 2,..... 6 are treated as constants, and where C, (c) Is to be chosen from the

real data of some airplanie. For the '1'-2(' airplane of Ref. 22, the following approximiate

Model is obtained.
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4 = q + 9.17Cz(a) - 1.8(be + 70) + 7.36

4 = 5.73(Cma + Cm 6,e) + 2.9

where Cm = -1, Cm, = -1.5 and where the nonlinearities of the C,(a) curve can be

represented by the following low-order subspace models:

a < 14.4' , C,(a) -0.07329a

14.4' < a < 15.6', C,(a) - 0.1a 2 - 2.9a + 20.0

15.60 < a < 19.6' , C,(a) -0.02a 2 + 0.74a - 7.8

19.60 < a < 28', C,(a) -0.47 - 0.02a.

These subspace models are curve-fits to the actual post flight aerodynamic data of the T-2C

obtained by system identification analysis, [22]. We note that these aerodynamic derivatives

represent approximate values for the total airplane. The above model may lack continuity

at the boundary points since all numbers have been rounded off. The model given in Section

3 has less round-off error associated with it, and as a consequence there is continuity at the

boundaries. This continuity is with respect to the curve but not necessarily with respect, to

the slope.
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Appendix C

Volterra Expansion for Longitudinal Example

In this appendix we present the details of the Volterra expansion for region II (14.36' <

o < 15.6') of the longitudinal limit cycle example considered in Section 3.1. The expansion

for region III is similar, and the equation is linear in the other regions.

The simplified longitudinal equations are

ii = q + 9.168 Cz(o) - 1.8336(e + 70 ) + 7.3619 (C.1)

= 5.73(-o - 1.56e) + 2.865. (C.2)

In region 11 we have

C,(a) = 0.0972202 - 2.8653a + 20.03846. (C.3)

Substituting (C.3) into (C.1), (C.2) and rearranging gives

. [q + 0 .8913a2 - 26.269a + 178.24] + [-1.83361
X L -5.73a + 2.865J -8.595 (p)

wherex= []

Considering an input of the form

6, = 6', + k,, ((.5)

the solution of (C.4) may be written in the form

,x = x + kxl + k2 ,r2 + k 3 + .... (C.6)

The equilibrium input, in region 11 was chosen to be 6,0 -9.24'. This resulted in the

,,qulilrilm state a'o = [1.1.36", - 1.7552' / . cc]7 '. Substituting (C.5), (C.6) into (C.4) results
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[(qo +kql±+ +.8913(ao +kai±+...)2 -26.269(ao +ka + ... ) + 178.24]

+ -183361 (b.5 + b

Using the equilibrium values, expanding terms, and keeping terms up to order 3 in k

yields

kix1 I± k2i 2 + k 3

r(060a + q, - 1.8336bei) + k 2 (0.6709a 2 + 0.8913a2 + q2)1

k(O.70a 1 k(-5.73a, - 8.5956e,) + k 2 (-5.73a 2)J

+[k 3( -0.6709ax3 + 1.7826ala 2 + q3)

Equating coefficients of equal powers of k yields the following equations for the Volterra

scries terms.

0.670 1 x +[1.8336] b
-5.z73 0] -8.±595

i2 = 0.679 1]x2± [o08913]

i= [0.679 1j X3 + [1.7826ala 2]
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Appendix D

Wing Rock Model

Aircraft configurations incorporating slender forebodies generate a wing rock limit cycle

phenomenon at high a (angle-of-attack) due to unsteady aerodynamic effects, [23 - 33]. Delta

wings with leading edge sweeps greater than 760 are known to exhibit wing rock. Nguyen,

Whipple and Brandon [24] present wind-tunnel testing results of such an 800 delta wing.

The F-5 airplane which has a slender forebody is known to exhibit wing rock at high ck.

Lutze [32,33] presents wind-tunnel laterial-directional aerodynamics data of a 10-percent-

scale model of the F-5E airplane. A wind-tunnel investigation of a 16-percent-scale model

of the X-29A airnlane (which has the scune nose section as the F-5 airplane) is described in

Murri, Nguyen and Grafton [28]. Using the data contained in these references we construct

a wing rock model. First, we investigate the aerodynamic properties of the 800 delta wing

that is inherent in wing rock. We inspected the scaled X-29A wind-tunnel model and found

it to exhibit similar wing rock model characteristics as the 80' delta wing. For this reason

we construct our model based on the 80' delta wing data, [24].

The standard wind-tunnel test technique used in the study of wing rock phenomenon

is the free-to-roll tests. In these tests the physical scaled model is sting mounted on an

apparatus which allows the model to rotate freely about its roll axis (i.e., the body x-axis)

with no angular limitation. A 800 delta wing mounted on such an apparatus is shown in

Figure 2 of Nguyen, Whipple and Brandon [24]. The resulting system is a single degree

of freedom (SI)OF) system. To keep our presentation as simple as possible without loss of

qualitative significance, we consider a mathematical model of wing rock resulting from such

a wind-tunnel testing apparatus.

In a free-to-roll test, the pitch angle 0, which is fixed, is preset according to the desired

angle-of-attack (a) at zero sideslip (3 = 0'). The roll angle o denotes the angle of roll about
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the longitudinal body x-ax is.

11t. V lw IOle total al ispeed. 11wi (oil vCIIIitia I (jell itiol ix o[ the body1 axe NXcS tl(WiI

components (u,v,w) are

u = Vcos(O)

-v Vszn(O)cos(k )

and the angle-of-attack and the sideslip angle satisfy the identities

W
tan.(a) = -

Ut

V"

From these we have the identities

tan(/3) =
VU2 + W2

sin(a) = W
Vu2 + W2

tan(,P) =
w

COS(O) =
V

cos(a) =

Vu2 + Z1,

s~n() =v/
2 + Uw2

V

Cos ( ) =

./v-2 ± W2

Observe that
1)

=Vcos(/3)
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COS (V) 1/V-2 -2

Since it and V are constant functions of time. From these it follows that

C co(y) r2 ± o

or. equivalently,

The angle of attack o and sideslip angle /3 are functions of 0 and p and satisfy the following

relationships,

tan(a) =tan(O)cos( p) (D.1)

"n.( 3) =s 'n(0)si'n(p) (D.2)

tans(O) = cs(a)taos({3) (D.3)

COS(0) si= O(0) cos(8 (DA)

=in(l) - cos() (D.5)

/3 sin(a). (D.6)

In our construction of a wing rock model it suffices to consider the following approxima-

tion to Equation (D.3), using small angles in /3 and V:

/30 i() (D. 7)

The roll rate p satisfies

p- (D.8)

The motion ab~out the roll axis is governed by the nondimensional aerodvnamic rofling mo1-

flent ('oefficiert (rwim-h is a fuinction of (1, /31, /1 n 6,
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where

= p(h)V2 = free stream dynamic pressure

p(h) - standard air density at altitude h

S = wing reference area

b = wing span

4- roll moment of inertia

6, =-aileron control surface deflection angle.

The rolling moment coefficient Ct has the expansion

pb
C'e(a,/3,p,13,) =Oe(a)/3+ ot'(a,/) + CI'0 (a,3)6. (D.l10)

where

(I = C1,(a, 3) + Cto(a,/)sin(a) (D. la)

and where, from (D.6) and (D.8),

CI ( ,Lb = Ct((a, /3)sin(a) Vb  (D.1lb)

Using (D.7) and (D.10) we rewrite (D.9) in the sLandard form

P+ wL(o) p+ 2w.(c) (o, )p = f(a,3)6. (D.12)

where
2 - (a-s') CtE(a)sin(a) (D.15)

2,,ta)((a,,) = 14)

/(a,) (1.) Ct (a,). (D.15)
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I order for the system (D.8) and (D.12) to be stable at high a it is necessary that the

signs of C,(,(o) and -W(,(o 3) both be negative. The sign of Cet(c) is indeed negative at

high 0. We rermiark that (Cf,(0,/3) has a negative sign at low a. But airplanes that exhibit

wing rock at high ck, 250 < o < 50' , have a coefficient derivative C'j,(a,3) that is positive for

small sideslip angles and negative for large sideslip angles, Nguyen, Whipple and Brandon

'24] and Murri, Nguyen and Grafton [28). The wing rock limit cycle phenomenon results

from this switch in sign of Ct,(a, 3) from positive to negative at high a as the sideslip angle

increases to large amplitudes.

In order to make use of Eq. (D.l0) we need (quantitative) expressions for the aero-

dynamic derivatives C 3 (C) and Cep(a. 3). Wind Tunnel model data provides Ce%(a) and

0,(o, 3) in graphic form. We remark that wind tunnel model data provides a model for the

left-hand side of Eq. (D.11a) but it does not provide separate models of the terms ('1 p(a. 3)

and (Ci((a, d) on the right-hand side. The model given below in Eqs. (D.16) and (1).17) is

an approximation to the wind tunnel data plots contained in (24).

The model of C,(a, 3) presented in Nguyen, Whipple and Brandon, [24], for the 800 delta

wing is typical of airplanes exhibiting wing rock at high a. Their model can be approximated

by the following:

NASA WIND-TUNNEL STING MOUNTED MODEL 80' delta wing

(,,(o = :30', 31) = 0.4(1 - 7.641/31]1 0 < 131 0.35 (D.16)

(',,( = 30c) = -0.4.84 (D.17)

23 (3 = ;.sinn at ( = 30") (1).IS)
(q, tb ,Nq.I - , ( ' 19", - -.) .6 7

(fjo = 30",:) - .76.185(1 - 3.821 (D.20)

(Il 2
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so that

p = -26.6667o + 0.76485[l - 3.821YI]p (D.21)

There are no control surfaces on their wind-tunnel model. Therefore, the f(n, 13) t ermn drops

out. The above model is used in the Volterra Series analysis of Section 3.2.
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Appendix E

Expansion of Volterra Series for Wing Rock Example

The model for wing rock as derived in Appendix D is given by

- -26.7; + 0.76[1 - 3.82 1;i]p.

\Ve can represent this equation with respect to the following two regions:

Region I: ,2 > 0

p = -26.7,; + 0.7611 - 3 .82;]p

Region II: ; < 0

fp = -26.7; + 0.76[1 + 3.82;]p.

\Y note that the I) equation is bilinear in the tpp term.

A state space representation of the nonlinear equation is given by

[' ~)'.9 ]] " i = 1, 2.[ [-26.7 0.76] p[ (1) t 2 . 9 2
;pj

Let*r [T 1 and express the system as

X -I- (c)Yl. term c ( )'2.92, " - ,2.

tsing the \olterra Series technique described in Section 2, we represent the nonlinear

solutions ;(t) and p(t) as the infinite expressions

p(t) = po + ;1 (t)k + ; 2(t)+ + ,,(t)k + .
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p(t) = po + p,(t)k- + p2 (t)k' + + p, (t)k" +

(,,o, Po) = (0, 0) equilibrium point (unstable).

Taking the product of o(t) and p(t), collecting terms with respect to like powers of A- and

taking into account the equilibrium point yield

pp = ( pjpi)k' + ('pjP2 + y 2pj)k 3 + ( pp 3 + P2P2 + , 3p1 )k4 + ...

We make the identifications:

g12(XI) = PIPI

g22(,ri, X 2 ) = Y'lP2 + 'P2PI

g33 (XI, X2, X3) = (IP3 + '2P'2 + 03PI

)PP = gi2(xi)k ± g22(xI, x 2 )k 3 + g 32 (X,, x 2 , x 3 )k 4 +

The Volterra Se-ies approximation of the nonlinear equation is therefore given by:

= Ax,

2= Ax 2 +g 1 (x1), g1 (x)= Cgl2(Xl) c =(-1)2.92. j =I2

= Ax 3 + g2 (x 1 , x 2 ), g2 (xI, X2 ) [cg 22(xI, x2)

n= Ax n + gn-I(Xi,, Xn 1) gn-i(X I , X n1 ) = [Cg(n -1)2 (r2. . x., -,~)

wherex=[ ]  =l,=Vi.

63



Appendix F

Two-Term Volterra Series Approximation

InI this appendix we present the details of the Volterra series analysis for the wing rock

example disculssed in Section 41.1. .As requested by the contract monitor, all derivations

needed to obtain the two-term Volterra series approximation X 2 (0) = 1 (t) + X2(t for t he

svstenm (4.1). thus (4.2). are presentedl here for the region (' > 0. The 2 x 2 matiIx A andl

the constants a~b~c as wvell as the 2 x 1 vector functions r,g are as defined in Section 4.1.

Fromn (4.5) and 14.6) wve see that the 2 x I vector functions 1,1(/) and J'2( t) satisfy

-12(t) =Ax.2(t) + [-r(0)(t) I .r2(0) =0 (F.2)

where

Solving for x, t) in (F. I

Equation (F~. 1) is a first-order linear ordinary differential equation with constant co-

efficient matrix A. Figenvalues for the matrix A are A,1  (b + b2 -4a)/2 and A2 =

(b - -P 4a)/2. Note that b 2 - 4a < 0 thus A,1 (b/2) + iwLo and A2 =(b/2) - iw04) where

,,o= ( V4-a- b2 )/2. The matrix exponential c"t, the state transition matrix for (F.1), can

be comp~uted by the Identity (see Miller [38. page 111])

4At = WI(tI + ZV2 (t)(A - AI1) (F.3)

where I Is the 2x2 identity matrix and the scalar functions w,1 and 11 2 satisfy

; 111d

A6'i 1- 1 (i,'() 0 FS



It now follows that

uY1 (t) = eAt(F.6)

anid

WA(t= e A2t j0 CA2 W2(S)ds

= eA2t 1 sA-A2 )dj

= At [etA-2 (A, A2) 0

Alt A2 t

A, A2

U.sing identities (F.6) and (F.7) in (F.3) yield

c At c Alt I±+ CAlt _e A2t (A A, I1 )
A, A2

-ebt/2 ±iot +ewot -_eiW(A - AI1)l
I ~A, - A2

- ebt/2 eio + 2is znwot (A - AI)][ 2iWOj

-ebt/2 {ewotI + s inwt A, I 1

e ~ -Asnw t sinwt +
a inw t e Wt+ (b -A I) sinwo t]
WO WO

which gives the identity
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Fcoswot -bsinwot sinwot 1
e*4t =ebt/2 2w0  WO____]

-easinwot COWt+bsinwot

WO w

Let Bi, (t) denote the 21h row-Jth column entry in the above matrix, see equation (4.7).

The solution xl(t) for the initial value problem (F.1) is given by

XI(t) = [0 At ebt/2 0 BI2 0(F.8)

Solving for x,(t) in (E.2)

Equation (F.2) is a, first-order linear ordinary differential equation with a nonzero forcing

[unction

[-cxuj(X12(t)
where from above xii(t) =e bt/ 2 p'B(t) and X1 2 (t) = ebl/2 pOB 2 2 (t). The variation of

constants formula together with the zero initial conditions of (F.2) yields

X2(0) = (p0 )2 j eA(t-r) [01 e b rB 2(r)B22(r)dr-.

\Ve now employ the above calculation of e At (in terms of the B,2(t) functions defined above)

to express X2( 1) b~y

X2(t) =(1)0 )2 e At j eA, [1 (C)e bT B, 2(-r)B 22(Tr)dr

X2( = C~p0)2eAt ft C b7-/2 B 12 -7) 1 eb 'BrY -) 22. d
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X2(t) = C(pl)2 e" eb/ 2 [ B12 (-7] B 12(r)B 22(r)dr. (F.9)
Jo [B 22(1 IT

The matrix eAe is nonsingular and has an inverse eAt. We shall now note that po # 0

and use (F.9) to obtain

-AtX2(t V - =_ eb/2 [ B _;] B12() B2 7)d . (F.10)

We now direct our attention to the first row of the right hand side of (F.10).

RI(t) -- ebr/ 2 B, 2(-r)BI2(r)B 22(r)dr

1 - ebr/2sin2WrcoswoTdr - -- / eb/2sin3wo rdr

Integration by parts: u = ebT/ 2 dv = sIn 2worcoswordr

(Itg Ato ) ,r dT i~a

R11(t)~ ~ ~ ~~~~~~_ I ,/ i 0-I~ TS171
3 

w d

L,)02 00 r - U 'O
-1 () ef- bT,2 in r,o- j bb/:si? ¢3oTdr}

2w 3 ebTl2sin3 word r-

Rll(t) - 3 w3 3 ebr/2sin3wordr.

For the second row of the function on the right-hand side of (F.1O) we have

R 2 1(t) = ebr/ 2B 22(-r)B 22(r)BI 2(r)dr
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e br/ 2 (COS 2 woT - -si2 n 2oT drwo
R 21 (t 10 423s W W d

R21(0 ft c br/2 -(1I +b2 inLo-swod

t T2t ebr/2 b2

R21 t M -snW 0 7d7 ] ( + i-~i~o
10 WO LOO ~W 0 SnWd

We now integrate the first termn on the right to obtain

J?21t4 [ebt (-?*nwot -wocos Wot) + Wo

-j
t eb,/2 (1 +b2 W

0 LOO wo

In order to eliminate the integral terms from both R11(t) and R 2 1 (t) we note that (see

integration tables)

6 bT/ 2 
n

3 wdT 4 2
2 3w f(-bsinwOt + -~3wocosOt)e bt/ 2sin 2wOt

+62~ ftcbr/2sinwO-rdr}

Integrating the last termn gives

j br-/2 51n 
3  7d- 4 b {(sinwot - 3wcst)ebt 2 sin 2 w t

24
624 c bf/2 (-WOCOswLOt)f + .51inwot)

+ 24w 3
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(Note:P 2 + 4w,')= b' +4 (4 = )_4a)
4

2b et/2s'n3wo 12w0  ebt/ 2 si 2~0 cs
V2 + 36W2 i o b2 +36W2 i uocso

2 3  12W2
-24, ebt/ 2cst I ebbt/ 2 int

aWb + 36wo) a(b2 + 3&02)0

+ 24wg
+a(b2 + 36wo)

We now have the following representations for R11(t) and R 21(t).

R 11(t) =-ebt/ 2 sn3Wt-b ( 1b/ 2b nw

2~, 24w 3~ - Kb2 {et12 2 bsinwot+24,0

l2wosin Lwotcoswot - 04~os~ +~ ~sn~ 04

a aa

R 21(i = [ebl/2( (sno oowt o
awo 2

-a (- 1 .2 .b/ 2sn3Lt
w b3 + 36w~ {0 t 2 2bi

- l2w;Osin wotcoswot - 04goso
a

+ 12wo bsinwot )±+24w}
a a

It follows from the above representations for R11(t), R21(t), and (F.10) that

X2 (t) = -e At(p) 2 C [R1, t]
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-C cp) 2eAt{ r(3b 2 + X6w2) 1 sin 3WOt - bi/2[ -6ab 3wg (b±3W)

+ 4b 1 i Sf 2U.otCOSWotb6t12
+ [12 J w(b 2 +36w~

+ b 1 coswol bt/2
- 36~ +24a (b2  L 3w2)

+ - SbO sinwot e bt/2
Lb36bW~24Nab 2awo(b2 +36W2)

+ b2+3L02~2ab +360 -24 Ia(b2±+36wo)}

70



Appendix G

SMP Function for Volterra Equations Calculations

The SNIP function used to generate the differential equations for the Volterra series terms

is listed in Figure Al. The nonlinear differential equation is assumed to be of the form

i = f(.r, u)

The inputs to the function are:

$f = {fl, f2 . ,fI = components of f(x,u).

$var = {l. .. , x,, u} = list of state variables and the input variable (last).

$eq = list of equilibrium values of the variables in $var.

$ord = number of Volterra series terms to be generated.

A sample output of the program for the wing rock example is shown in Figure A2

This function implements the procedure outlined in Section II. A line-by-line description

of the function follows.

I. %n is set equal to the order of the system.

2. %sub is set equal to the substitution list.

$ord

$vari - E $vari[j](%a)j + $eqi = 1.... %n
j=1

$var%,+ --* (%a)$var%n+l + $eq%n+l

3. %fs is a set equal to $f with the above substitutions.

4. Technical detail. Ax[], a projection that converts truncated series expansions into poly-

nomials, is forced to distribute over lists.
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5. The function cf is expanded in a Taylor series with respect to the dummy variable (%a)

up to order %Tord.

6. For each Volterra series term [i], 1:10 is set equal to the coefficient of (%a)' in theSdt

expansion of ( fs.
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/*tvolt(Sf,$var,$eq,$ord)
gives differential equations for the components of the state
corresponding to terms in the volterra series for the state
equation dx/dt=$f(x,u). The state variables and input variable
are listed in $var with the input variable listed last. $eq
is a list of the equilibrium values of $var, and Sord is the
number of terms in the volterra series to be considered. K/

volt ($f,$var,$eq,$ordh:S\
C .'n Lent$f] ;\
%sub:Cat(Ar(%n,$var($1]->SumUt$var($l]](iI %a-i, (i,l,Sordl]\

4$eq[$l]], ($varl%n+l]->%a $var(%n+lJ+SeqE%n*1DJ];\
%fs:S(Sf,%sub]; _Ax(Ldist] :l;%fe:AxEPs[%fs,%a,0,$ordJ];\

A Doli,l,Sord,Dolj,l,%n,Prt"d/dt",E$varlji]i,"t",\
N(Col[Ex(Coef[".a-i,%felijJJJ1]];PrE];Pr~l])

FIGURE Al. SMP Functioii

SMP 1.5.0
23-JUL-1987 08:57:41l.05

#Ill]:: f:(p,-26.6667 phi+.76485 (1-3.82 phi ) p)

#0[11: {P,-26.6667phi + 0.76485p (1 - 3.82phi))

#I()]: volttf, (Phi,P,ul, (0,0,03,5]

d,-dt phill] p[1]
d/dt phi) 0.764.8 5 0[1 - 26.6667phj(1]

d/dt phi[2] p123
d/dt p121 0 .7 6485p[2] - 26.6667phi[2] -

2 .92173Ph11) phihi]

d'dt phi[3J P131
d.'dt p13] 0 .7 6 485pt3J - 26.6667phih3) - 2 .92173Ph1] phi[2J

2.9 2 17 3P[2] phill]

d/dt phi['4] =PE4]
d/dt p(4.] O.7 6 q85p(4] - 26.6667phiE4] - 2.92173phl] phih3]

- 2.9 2 173p12J phi(2] - 2.92l73pE3] phihi)

d/dt phi(51 p15]
d/dt P1 5] 0.76485p(5J - 26.6667phi[5] - 2.92173ph1] phi[4J

- 2 .9 2173p[2J phi(3 I - 2.92173ph3] phi(2]

- 2.92173p.4] phill]

#1[1:- Exit[]

FIGURE A2. OUTPUT FOR THE WING ROCK EXAMPLE
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